HO-1 and CO decrease platelet-derived growth factor-induced vascular smooth muscle cell migration via inhibition of Nox1.
نویسندگان
چکیده
OBJECTIVE Heme oxygenase-1 (HO-1), via its enzymatic degradation products, exhibits cell and tissue protective effects in models of vascular injury and disease. The migration of vascular smooth muscle cells (VSMC) from the medial to the intimal layer of blood vessels plays an integral role in the development of a neointima in these models. Despite this, there are no studies addressing the effect of increased HO-1 expression on VSMC migration. Results and Methods- The effects of increased HO-1 expression, as well as biliverdin, bilirubin, and carbon monoxide (CO), were studied in in vitro models of VSMC migration. Induction of HO-1 or CO, but not biliverdin or bilirubin, inhibited VSMC migration. This effect was mediated by the inhibition of Nox1 as determined by a range of approaches, including detection of intracellular superoxide, nicotinamide adenine dinucleotide phosphate oxidase activity measurements, and siRNA experiments. Furthermore, CO decreased platelet-derived growth factor-stimulated, redox-sensitive signaling pathways. CONCLUSIONS Herein, we demonstrate that increased HO-1 expression and CO decreases platelet-derived growth factor-stimulated VSMC migration via inhibition of Nox1 enzymatic activity. These studies reveal a novel mechanism by which HO-1 and CO may mediate their beneficial effects in arterial inflammation and injury.
منابع مشابه
Nox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells.
OBJECTIVE Basic fibroblast growth factor (bFGF) stimulates vascular smooth muscle cell (SMC) migration. We determined whether bFGF increases SMC reactive oxygen-species (ROS) and studied the role of ROS for SMC migration. METHODS AND RESULTS bFGF rapidly increased rat SMC ROS formation and migration through pathways sensitive to inhibition of NADPH oxidases, PI3-kinase, protein kinase C, and ...
متن کاملCathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K−Akt/p-HDAC6 Signaling Pathway
OBJECTIVE Cathepsin S (CatS) participates in atherogenesis through several putative mechanisms. The ability of cathepsins to modify histone tail is likely to contribute to stem cell development. Histone deacetylase 6 (HDAC6) is required in modulating the proliferation and migration of various types of cancer cells. Here, we investigated the cross talk between CatS and HADC6 in injury-related va...
متن کاملCilostazol Inhibits Vascular Smooth Muscle Cell Proliferation and Reactive Oxygen Species Production through Activation of AMP-activated Protein Kinase Induced by Heme Oxygenase-1.
Cilostazol is a selective inhibitor of phosphodiesterase 3 that increases intracellular cAMP levels and activates protein kinase A, thereby inhibiting vascular smooth muscle cell (VSMC) proliferation. We investigated whether AMP-activated protein kinase (AMPK) activation induced by heme oxygenase-1 (HO-1) is a mediator of the beneficial effects of cilostazol and whether cilostazol may prevent c...
متن کاملA novel adipocytokine, omentin, inhibits platelet-derived growth factor-BB-induced vascular smooth muscle cell migration through antioxidative mechanism.
Omentin is a novel adipocytokine expressed in visceral adipose tissue. Secretion and blood concentration of omentin decrease in the obese subjects. We previously demonstrated that omentin is anti-inflammatory in vascular smooth muscle cells (SMCs). While vascular remodeling via migration of SMCs is also important for hypertension development, it remains to be clarified whether omentin affects t...
متن کاملEndothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide.
CO is produced in vascular smooth muscle cells (VSMC) by heme oxygenase-1 (HO-1). CO increases cGMP levels in VSMC; however, its possible additional roles in the vasculature have not been examined. We report that a product of HO, released from VSMC and inhibited by hemoglobin, has paracrine effects on endothelial cells: it increases endothelial cGMP content and decreases the expression of the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 30 1 شماره
صفحات -
تاریخ انتشار 2010